INTERNAL WAVES OF FINITE AMPLITUDE

R. L., Kulyaev UDC 532.501,32

Much research has been devoted to unsteady fluid flow with a free boundary. For example,
Ovsyannikov [1] and Nalimov [2] have proven theorems on the existence and uniqueness of

a solution, and a number of papers have proposed algorithms for numerical solution, based
on various chain methods [3-6] or potential-theory methods [7-9]. In the present article we
consider two-dimensional potential waves of finite amplitude on the interface between two
heavy fluids of different densities. The initial problem is reduced to the Cauchy problem
for a system of two integrodifferential equations. An algorithm for the numerical solution
of this system is constructed, and the results of calculations are presented.

1. We consider the plane motion of two nonviscous, incompressible fluids of different densities in
the field of gravity. The flow is assumed to be continuous in the whole plane, potential flow outside the
interface line separating the fluids and periodic in the horizontal direction.,

Let a Cartesian coordinate system x, y move in the horizontal direction with velocity equal to one
half the sum of the flow velocities infinitely far from the interface line L, and let the y axis be directed
vertically upwards (Fig. 1). Inthe upper (D) and lower (D,) flow domains the fluid velocity V = (Vy, Vy)
satisfies the equations

divv=0, curl V=0, (2, yY)ED,, n=1, 2 (1.1)
and the following boundary conditions: The perturbed flow velocity damps out as we become removedfrom
the interface line

U o
no fluid flows aeress the interfaee line
v,-v=v-v, n=1, 2, (1.3)
and the drop in the hydrodynamic pressure at the interface line obeys the Laplace law
P1—pa=Uk. (1.4)

Here t is time, v, =const, ¥ is a unit normal to L, v is the translation velocity of the line L, v, and py are

the limiting values of the velocity V and pressure p, respectively, on approaching L from the domain Dy,

i is the coefficient of surface tension, and k is the curvature of the interface line, with k<0 (k> 0) if the
domain D, is convex (concave) in the neighborhood of the point in question.
The initial velocity field

U=z 1"
R N ) V(z, y, 0)=Vo(z, y) (1.5)
LN /% J z is assumed to be known and to satisfy conditions (1.1)-(1.3).
¥ 2l Yz )
My 2 Insofar as the interface line L) is not known beforehand, the problem
N as stated is nonlinear,
Fig. 1 2. Let us derive the equations of motion of the wave surface L, assum-

ing that the surface has no self-intersection points and that as functions of
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arc length s the coordinates of the wave surface and the velocity discontinuity v, — v, are continuously
differentiable to some order (the required order of smoothness will be made more precise below inSec, 4).

By virtue of (1.3) the discontinuity in the flow velocity at the line L satisfies the equation
Uy, == y0L/ 05, (2.1}

where the function y is real, and ¢ =£ +in is the complex coordinate of a point on the interface line. The
solution of the associated Riemann boundary~value problem [10] enables us to represent the velocity field
in the form
37 1 uo T
Vi) =g | v 0otg— 516, 0} ds, 2=L, 2.2)
0

taking into account the periodicity of the flow and conditions (1.2) and (2.1). Here \z =Vg = iVy is the com-
plex velocity, A is the wavelength, [ is the length of the wave profile, z =x +iy, and the positive direction
of traversing the contour L is the direction for which the domain D, in Fig. 1 is on the left, The last equa-
tion describes the velocity field induced by a vortex surface with intensity v, Hence, in order to satisfy
the condition (1.3) that no fluid flow across the interface, it suffices to take one half the sum of the bound-
ary values of the flow velocity as the translation velocity of the interface, that is, v =(v1+v2)/2. Then v is
determined from the Sokhotskii—~Plemelj formulas [10] by means of the following singular integral:
_ g U0 - ,
v(s,1) =g | (0.1 ctg -1 (s, 1) — L (0, 0)} do. 2.3)
Y
We note two consequences of the last equation:
(1)
{ ve (s, t) ds = 0, 2.4)

(1) .
J‘ Uy (39 t) ds = 07 (2'5)
[}

where v, and vy, are, respectively, the components of the velocity v tangent and normal to the wave profile
(see Fig. 1).

In a coordinate system associated with an arbitrary point of the line 1. and moving with velocity v,
the Cauchy—Lagrange integral of the equations of motion of the fluid has the form

P 8@, v —v? . . 2.6

_534- s+ —— tgn="Fn(t), n=12. (2.6)
Here py is the density of the fluid; the differentiation 6/6t is performed in the moving coordinate system,
so that v = (6¢ /8t, on/6t); $, and v,.,=v are the limiting values of the velocity potential and relative fluid
velocity, respectively, on approaching L from the domain Dp; g is the acceleration due to gravity; and Fp
are arbitrary functions. Taking into account (2.1), (2.3), and the equations

Vyy= _"‘g‘ T, Veg = "g— T,

@u,) = @0 0,8) + [{oc + (10 L}do, n=12, @.7)
0

where 7 is a unit tangent to the line L. (see Fig. 1), we can obtain from (2.6) the following expression for
the pressure drop at the wave profile:

s

1 & —
P1(8) =P () =~ 57 [ {01 + 02 ¥ + 2(pa— py) vx) do + Bt (2gm + * ~v2) + % (2).
b .
Here the initial reference point for the arc length moves with velocity v{0, t), and ¥ is some function de-
pending on F,{), F,(t), ®(0, t),and ¥,(0, t). Eliminating the function x in the last equation and introducing
the dimensionless parameter

R=(py—p)/(p>+py), (2.8)
we write condition (1.4) in the following form:

6_6z 5 (v + 2Rv;) do = { kg (2gn + 3’,;— \*)} UTS. 2.9)

P12
o=0
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Condition (1.2) leads to the following relation:

zi.f) 3 (5:1) ds — 20 (2.10)

0
Thus, the boundary conditions (1.2)-(1.4) are represented in the form of Eqgs. (2.3), (2.9), and (2.10).
However, the motion of the wave profile is determined only by Eqs. (2.3) and (2.9), because condition (2.10)
is a consequence of them.

3. For the purpose of simplifying the system (2.3) and (2.9) we go from the Eulerian arc length
s € [0, I{t)] to the Lagrangian variable a € [—n, *] with the following correspondence in time between the
points of the wave profile. The point {@, t)=%(s@, t), t) is translated in time dt to the point { @, t +dt)=
t@,t)+vis@, t), t)dt. As the variable a we can take, for example, the arc length 27s/I at the time t=0,
We introduce the function

F(a7 t)=?(8(d, 1), t”:a(av t)l

and switch to dimensionless linear quantities, taking A/27 as the unit of length, Then, the system (2.3) and
(2.9) can be written as follows:

_ x
G@.t) =5 | T(atetg HEO=EED 4 (.1)
-3t
Te(a, )+ R [ Ty (o) K (g, @, 1) do. = H (3, 1), (3.2)
e
where
Ko ) = g Infta o, otg 205200 (3.9)
_ R, | i L@ )= () 3 _[_ 2k 1 13
H(a, )= 57-Im ‘lga (@) _,\n e ) e ——t@n d“} + W{m —R (2g" MR )} (3.4)

The initial condition (1.5) can be brought to the form
' (a, 0)=F, (a), {a, 0)=Ly(a), (3.5)
where Iy and &, are given functions. Thus, the initial problem (1.1)~(1.5) reduces to the Cauchy problem

with the initial data (3.5) for the system of equatlons (3.1)-(3.4). A similar system was given by Birkhoff
[11] for the case pu=0.

Let us point out the following invariants of the system (3.1)~(3.4):

7 7 3 3.6
Iy= [T t)da=4dwa, Ii—ily= [ L(at)% (e t)da =0, (3.6)
-

-
where I.y, L., and I, denote the left sides of Egs. (2.10), (2.4), and (2.5), respectively.

4. In a neighborhood of the time t =0 let the functions 8T /8a and 8% /oa® exist and be Holder con-
tinuous with respect to g [otherwise, the system (3.1)-(3.4) would lose its meaning].

Then, the derivatives Ty and &;; exist and are unique. In fact, let us find the velocity ¢; from (3.1)
and substitute it into the right side of (3.2). Inthe integral equation obtained for the function Iy the kernel
K is Fredholm if it is defined on the line a =« as follows:

Kfa,a.t) =lim K (a,a,t) = k{a, 1) [5. (a, 1)].

Sukharevskii [12] has shown that the eigenvalues of a Fredholm integral equation of the second kind with
kernal K lie outside the interval [~1, 1]; but it follows from {(2.8) that |R|= 1, andtherefore, for all R the
function I} is uniquely determined from Eq. (3.2). The Holder continuity of this function enables us to
determine the acceleration &4 from the expression

L‘(a) g(a) L@—Li@ )
N —sz@—t@i %>

(@ =7 | [T cte @.1)

-'»r

o ol
-

obtained by differentiating (3.1) with respect to t.

Similarly we can show that if the functions 92T /9a® and 8%t /Aa? exist and are Holder continusus with
respect to a, then the derivatives Ty¢ and &y exist and are unique. We obtain thereby the following scheme
for determining the time derivatives of the functions T’ and &:
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C,P —_— ;t -— Pi “—}’;tt — Ptt —_— Cttij
This recurrence scheme can be continued indefinitely, if in a neighborhood of the time in question the func-
tions T’ and ¢ have all derivatives with respect to a.

We note that by taking into account the identity (4.1) the system consisting of the equation

z a 2nk {1 I
Iy + 2R-Re (CaCit) = 2 {ﬁ;_ R(Zgn + TW)}

and Eq. (8.1) is equivalent to the system (3.1)-(3.4), but it has a more compact form.
5. Let us represent the complex potential of the flow W=&=i¥ in the following form:
W(z, t)=(—1)"vez-}tw (2, ¥),
where n=1 for z € D;, n=2 for z € D), and w—0 for |y|—c. Then the right sides of Egs. (2.6) take the

form Fp=cp +v_%/2, where

. 1
6= lim {E"p(xa Y, t) + gy}:

Yoo

. 1
¢ = lim {p—- plz,y, t) + gy},
Y->—00 2

The quantities ¢; and c, depend only on time, and one of them is arbitrary. On the other hand, it can be
shown that as one gets more distant from the interface the perturbed potential w damps out exponentially,
and the integrals ' '

f wdz, n=1,2,
Mn

where My, is the contour ABPnQnA (see Fig. 1), exist and are equal to zero., Hence, we see that
[ Wedz = (— D)o AL(O) + L(DV2, n=12.
AB .

Here W, =%, +i¥, is the limiting value of the potential W when L is approached from the domain Dy. After
substituting expression (2.7) for &, and the expression

Yo (s,1) = Yo (0, 8) — [ vy (0,2) do, n=12
[
into the last equation, we can determine &, at the point s =0 up to a constant as follows:

. .
@, (0,1) = - Y{[vt + (— 1)n%]§+uvn}ds, n=12. (5.1)
» d
Now for the limiting values of the pressure on the wave profile we have from (2.6) the expression

2

r v w24 § ... Vo
T g (s ) et 2, n=1,2,

Py 2

(5.2)

in which %, is determined according to Egs. (2.7) and 5.1).

6. Let the functions T' and ¢ be known at the time t. We look for the values of these functions at
time t +At according to the Taylor series

I, t+A9=T(a, O+Tda, HA-Tu(e, DAY, 6.1)
&a, t+An=E(a, )+l(a, DAI+Ti(a, (AN 2Ly (‘L (AL, (6.2)

The problem of calculating the time derivatives of the functions T and £ ultimately reduces to the
problem of numerical integration and differentiation. In order to solve this problem we partition the range
of variation [—n, 7] of the Lagrangian variable into N intervals of equal length 27/N, and henceforth, we
shall operate only with the values of the functions at the N+1 partition points. For the numerical integra~
tion the seventh-order Newton—Cotes integration formula is used. If the integral is singular, the singu-
larity is isolated. Numerical differentiation with respect to the variable @ is performed by a sixth-order
difference-free method, based on approximating the function by a sixth-degree Legendre polynomial. The
integral equation (3.2) reduces to a system of N linear, algebraic equations for the values of the function
Tt at the partition points. This system is solved by using the Gauss—Jordan method to invert the matrix.

It is known that the surface of the contact discontinuity in a fluid is unstable in the sense that the
initial perturbations grow faster. the smaller their wavelength [13]. To suppress this short-wavelength
instability, it is necessary to introduce a smoothing procedure into the calculational scheme [14-186].
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0,8 In the present algorithm the smoothing is done at each step of
73,3 17} the calculated values of I and £, Here, as the smoothed value of the
4,65 ‘,’:’gg function at some point we take the value at this point of the fifth-
Sy <l 75 degree polynomial approximating the function at the given point and
6,60 =137 at the ten neighboring points (five to the left and five to the right) by
05 t=0 g the least~squares method.
2 et/2 0 T2
‘ Fig. 4 To control the accuracy of the calculation we used the invari-
: ants (3.6) in the following manner. The calculation is stopped when .
at least one of the following inequalities is violated:
7 v I, —amwel <04, [T <04, |I,[<0.4. (6.3)
t=0
P N A program carrying out this algorithm was written in the lan-
/.\\ 4,75 guage AL'GIBR for a BESM-6 computer. For N=60 the calculation
, ///\7 1,50 of one step according to Egs. (6.1) and (6.2) took 14 sec of machine
y> 235 time. Ignoring the derivatives It and &y, it took 9 sec.
= s 3.00 7. We note first that in all the variations considered below the
0 L p , gﬁ unit of length is A/27, as in Sec. 3, so that the dimensionless wave-

Fig. 5 length is 2w,

1. Kelvin—Helmholtz Instability (Instability of the Line of Tan~
gential Velocity Discontinuity in a Homogeneous Fluid). We take

A/erw as the unit of time and p; +p, as the unit of density. The initial conditions are of the form ¢, 0)=
a+i(0.1)*sina and T' (0, a)=2. The calculation ran from t=0to t=1 in steps of At=0.02. In view of the
symmetry of the flow with respect to the point £(0, t)= 0 we can restrict ourselves to consideration of a
half-wave. Its evolution during the indicated time is shown in Fig. 2, where points with the same Lagran-
gian coordinates are joined by straight line segments. Inthe same figure we give the distribution along
the wave profile of the pressure p, calculated by Eq. (5.2) with ¢,(t)= 0. Oh a small portion of the profile
we observe a drop in pressure and also an increase in the maximum and decrease in the minimum curva-
ture. In a version of the calculation in which only the functions Ty, and {4 are smoothed, this tendency is
displayed more strongly. The indicated behavior of the profile curvature leads to a violation of conditions
(6.3) when the calculation is continued. :

The profile curvature and pressure at the point of the profile behave similarly when the calculation
is done with the initial conditions £, 0)=a +i(0.1)7 sina and I" @@, 0) =sin a, modeling a vortex trace be-
hind an oscillating profile {17].

2. Rayleigh—Taylor Instability (Instability in the Field of Gravity of the Interface between Two Fluids
of Different Densities, when the Upper Fluid is Heavier than the Lower One). The unit of time is A/ 2ng)/?
and the parameters are R=—0.1 and p/(p,+ps) g~* {M(2n)}-? =0.,01. The initial conditions are of the form
t@, 0)=a +i(0.1)7sina and T @@, 0)=0. The calculation ran from t=0 to t=7 in steps of At=0.2. The shape
ofthe interface at various times is given in Fig. 3 (in view of the symmetry of the flow with respect to the
line x=—x/2 and x=7/2 we restrict ourselves to consideration of a half-wave). Simultaneously with an
increase in the amplitude of the wave we observe a growth in the curvature of the contour, which tends
toward the formation of a discontinuity. The last circumstance leads to a violation of conditions (6.3)
when the calculation is continued.

Before going on to consideration of the variations 3-8, we note that the initial conditions in.these
variations were taken from the linear theory [18].

80



3. Standing Gravity Waves on a Water—Air Interface (R=0.9975).
/;7, The unit of time is (\/27g)/%, The initial conditions are of the form

2

3

0,3%

L@, 0)=a +i(0.2)xsine and T @, 0)=0. The calculation ran fromt=0

to t=7 in steps of At=0.1. In distinction to the previous versions the
computation was stopped only because the given number of steps was
~037 g 1=t 1L exhausted. The evolution of the wave, shown in Fig. 4, is characterized
/ by the following features (as in variation 2, we restrict ourselves to
consideration of a half-wave). In the computation time the wave did not
straighten out; fixed nodal lines are lacking; the maximum ordinate of

the wave crest is greater than the minimum ordinate of the valley in
- absolute value; the maximum extension of the wave profile does not oc-
“\’{i ~— "/ cur simultaneously with the maximum deviation of the profile from the
EXG A 7 unperturbed level (y=0). These features of the standing wave agree
— T N N s with the conclusions of Sekerzh-Zen'kovich [19].
//‘—% ></_. It should be mentioned that the computation of the evolution of the
; \ wave ignoring the functions Ty and ¢y in Eqs. (6.1) and (6.2) but with
1 £ the same step size turned out to be unstable.
a 7 2%
Fig. 7 4, Progressive Gravity Wave on an Air—Water Interface R=

0.9975) with No Wind (v, =0). The unit of time is (A/27g)'/°. The initial
conditions are of the form ¢@, 0)=a +i1(0.2)7sina and T @@, 0)=(0.4)7sin«. The calculation ran until the
given number of steps was exhausted from t=0 to t=3 in steps of At =0.025, ignoring the derivatives Ty
and Zttt. The shape of the wave at different times is given in Fig. 5 in the coordinate system moving in
the positive x direction with the velocity of an infinitesimally small-amplitude wave. In this case the cal-
culated points "slip" along the wave surface, so to speak, in the opposite direction. To illustrate this cir-
cumstance, points with the coordinate a =0 are connected in the figure by dashed line segments. A remark-
able feature of the wave is the formation of a crest hanging above the valley.

The commutation of the wave withallowance for I'yand £y and with the same step size ran stably up
to t=2.25,

5. Standing Capillary Wave on an Air—Water Interface (R=0.9975). The unit of time is 0/ 22)%/2
4/ (o4 +p5))"/ 2. The initial conditions are of the form ¢ (@, 0)=a +i(0.3)"sina and I'@@,0)=0. The computa-
tion ran until the given number of steps was exhausted from t=0 to t =4 in steps of At=0.05, ignoring the
derivatives Ty, and {yt. The evolution of the wave (Fig. 6) is characterized by the following features (as
in variation 2 we restrict ourselves to a half-wave). Inthe computation time the wave never straightens
out; fixed nodal lines are lacking; and the minimum ordinate of the wave valley is greater than the maxi-
mum ordinate of the crest in absolute value. At the maximum extension of the wave profile there arise
on it smaller waves. For example, at time t=4 there are 10 inflection points on the wave profile,

The computation of the wave with allowance for the functions Ty and {44 and with the same step size
turned out to be unstable.

6. Progressive Capillary Wave on an Air—Water Interface (R=0.9975) with No Wind (v, =0). The
unit of time is \/2m)¥ %(u/ (o, +p,))~ /2, The initial conditions are of the form ¢, 0)=a + L (0.2)7sin a and
T, 0)=(0.4)rsin a. The computation ran until the given number of steps was exhausted fromt=0to t=
3.75 in steps of At=0.025, ignoring the derivatives Tyt and &4 The shape of the waves for a sequence of
times is given in Fig. 7 in the coordinate system moving in the positive x direction with the velocity of an
infinitesimally small-amplitude wave. The dashed line segments join points with the coordinate a =0, The
calculated points, as in case 4, slip along the wave surface. A characteristic feature of the evolution of
the wave is the fact that the wave crest tries to become gentler and the valley — steeper.

The computation of the wave with allowance for Iy and £ttt and with the same step size was unstable.

7. Wind-Driven Gravity Wave on an Air—Water Interface (R =0.9975) with Froude Number gA/27v =
0.005. The unitof time is A/27v,,. The initial conditions are of the form ¢{@, 0)=a + 1(0.2)7sin ¢ and T @, 0) =
2 +(1.253)sin a. The computation ran from t=0 to t=2.5 in steps of At=0,05. An interesting feature of
the algorithm in this case is the concentration of the calculated points near the foot of the wave and the
corresponding rarefaction in the neighborhood of the crest, while the shape of the wave is almost unchanged.
This circumstance leads to violation of conditions (6.3) when the computation is continued.
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8. Wind-Driven Capillary Wave on an Air—Water Interface (R=0.9975) with the Dimensionless Pa-

rameter (u/ (0; +0,))(A/2%) v, "2=1, The unit of time is A/27v,,. The initial conditions are of the form

t@. 0)=a +1(0.2)xsina and '@, 0)=2. The computation ran from t=0 to t=1.5 in steps of At=0.025 ignor-
ing the functions I'y; and £y. Analogous to the previous case there is a tendency for the calculated points
to crowd together in the neighborhood of the leeward node of the wave and to become rarefied in the neigh~
boerhood of the windward node. This tendency leads to violation of conditions (6.3) when the computation is
continued. Thus, for the numerical investigation of wind-driven waves changes in the algorithm are re-
quired.

In conclusion, the author would like to express his deep gratitude to D, N. Gorelov and A, V., Kazhi-

khov for valuable remarks.
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